
EUROGRAPHICS 2022 / R. Chaine and M. H. Kim
(Guest Editors)

Volume 41 (2022), Number 2

Compact Facial Landmark Layouts for Performance Capture

E. Zell1,2 and R. McDonnell1

1Trinity College Dublin
2University of Bonn

Facial Rig Compact Facial Landmarks Capturing

marker-based data annotation
M = 28 M = 32 M = 36 M = 24 M = 29 M = 33

Figure 1: Different to previous work, we suggest to derive facial landmarks from a low-dimensional facial rig by analyzing the degrees of
freedom. Our method (red) is purely based on the existing animation model and does not require large character databases or person-specific
4D sequences. Different compact layouts are computed by out method for two of Epic’s Metahuman character, with ε = 0.3, 0.5 and 0.7 for
the female and ε = 0.5, 0.7 and 0.8 for the male character.

Abstract

An abundance of older, as well as recent work exists at the intersection of computer vision and computer graphics on accurate
estimation of dynamic facial landmarks with applications in facial animation, emotion recognition, and beyond. However, only a
few publications exist that optimize the actual layout of facial landmarks to ensure an optimal trade-off between compact layouts
and detailed capturing. At the same time, we observe that applications like social games prefer simplicity and performance over
detail to reduce the computational budget especially on mobile devices. Other common attributes of such applications are pre-
defined low-dimensional models to animate and a large, diverse user-base. In contrast to existing methods that focus on creating
person-specific facial landmarks, we suggest to derive application-specific facial landmarks. We formulate our optimization
method on the widely adopted blendshape model. First, a score is defined suitable to compute a characteristic landmark for
each blendshape. In a following step, we optimize a global function, which mimics merging of similar landmarks to one. The
optimization is solved in less than a second using integer linear programming and guarantees a globally optimal solution to an
NP-hard problem. Our application-specific approach is faster and fundamentally different to previous, actor-specific methods.
Resulting layouts are more similar to empirical layouts. Compared to empirical landmarks, our layouts require only a fraction
of landmarks to achieve the same numerical error when reconstructing the animation from landmarks. The method is compared
against previous work and tested on various blendshape models, representing a wide spectrum of applications.

1. Introduction

Over the last two dacades, facial animation capturing evolved from
a research topic relevant only for high-end VFX application to a
widely accessible technology and is nowadays even integrated in
smartphones. Current applications span from highly-detailed cap-
tures of digital doubles to simple emoji animation, and from highly
actor-specific solutions to a nearly unlimited user base. Besides
capturing technology, best practices evolved for character creation
pipelines paving the way for parametric character configurators

like Epic’s MetaHuman, Daz3D Genesis or Polywink. The orig-
inally linear workflow, starting with motion capturing and move
afterwards to character creation and animation retargeting became
more and more non-linear due to convenient access and compelling
prices of pre-built characters. But if the character to animate exists
before the actual capturing, is it possible to limit the capturing data
and minimize data and processing time? We investigate the ques-
tion of how to distinguish between relevant and non-relevant infor-
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mation for capturing facial animation before the actual capturing
session without requiring a large database of facial expressions.

Previous work demonstrated that facial deformation can be re-
constructed from a sparse set of feature markers [BBA∗07,SLS∗12,
LZD13]. This observation inspired a significant number of research
works on accurate detection of facial landmarks [DYOY18] as well
as its use in applications like face reconstruction [LZZL16], fa-
cial tracking [CHZ14], emotion recognition [BZLM18] or as a pre-
processing step in facial re-enactment [TZS∗16]. In the times of
deep-learning accurate facial landmark detection remains an inte-
gral part of various recent publications, e.g. [CVW19, ZDKZ19,
FHCP19, YLC∗19, GPKZ19], demonstrating that robust estima-
tion of sparse feature points is of high relevance and interest.
In contrast to the high number of publications on accurate facial
landmark detection, we identified only two academic publications
[LZD13, CXZ∗02] that optimize the layout of facial landmarks.
Interestingly, to the best of our knowledge, optimization methods
have been neglected for practical layouts of facial landmarks. In-
stead, previous work and existing annotated image-data define the
layouts of facial landmarks in subsequent publications, especially
for data-driven methods. But, what if the facial landmarks we track
have been badly chosen despite our best intentions? Or is it possible
to speed-up data annotation time, without loosing accuracy?

Defining a layout of facial landmarks or markers for sparse facial
tracking is a trade-off between capturing as much detail as possible
and focusing only on relevant information. In fact, the approach is
comparable to lossy data compression methods that allow a strong
compression ratio, but when pushed too far, the decompression may
break. In this work, we aim to identify the limits of compact land-
mark layouts for facial performance capturing. We observe that in
many practical applications the character to animate is different in
appearance to the original actor and a mapping is required of the
actor’s performance into a low-dimensional space of blendshape
weights or rig controllers. This mapping makes compression and
information loss inevitable. At the same time, defining the bound-
ary of relevant and non-relevant information becomes easy. Infor-
mation that is lost after the low-dimensional mapping could be ne-
glected before capturing. In this paper, our key insight is that com-
pact facial landmarks layouts can be defined by considering the
degrees of freedom of the final animation model (Fig. 1). It is there-
fore possible to predict custom facial landmarks (Fig. 2) only with
data that is already part of the animation pipeline and without any
additional overhead like a dense capture of the actor [LZD13] or a
statistical model [LBB∗17].

Blendshape interpolation is the dominant approach for facial an-
imation on many consumer devices (e.g., iPhoneX) and in profes-
sional context [Sey16], where the number of blendshapes defines
the degrees of freedom of the model. We assume that the compu-
tation of the blendshape weights from a sparse set of facial land-
marks is sufficiently constrained if at least one representative land-
mark exists for each blendshape. Suitable criteria for considering
a landmark as representative are: good visibility (ideally during
all possible expressions), and strong relative displacement com-
pared to all other vertex displacements within the same blendshape.
Placing landmarks at vertices with strong displacements ensures
also placement at salient positions of the dynamic expression. In

practice, a single landmark can even represent the motion of sev-
eral blendshapes at the same time, e.g., closing and opening the
eyelid. Thus, by placing the landmarks carefully, the minimal set
of landmarks will be smaller than the degrees of freedom of the
blendshape model. In our work, we consider every vertex of the
3D blendshape model as a possible candidate for a landmark. To
solve the landmark placement problem numerically, we first esti-
mate whether a vertex can represent different blendshapes or not
(Section 3.1). In a second step, a minimal set of landmarks is com-
puted that represents different blendshapes (Section 3.2). The gen-
eral problem is equivalent to the NP-hard weighted set cover prob-
lem. Despite being NP-hard, computing a global minimum takes
less than a second using a state-of-the-art integer programming
solver, which is significantly faster than [CXZ∗02, LZD13] pre-
vious methods. Our method is evaluated on several professional
blendshape models consisting of up to 237 blendshapes, and com-
pared against existing facial landmark layouts. In addition, we dis-
cuss several practical extensions like symmetrical layouts, optional
backup landmarks for cases where more than one representative
landmark should exist, and we compute layouts for the FLAME/3D
FACS dataset [LBB∗17, CKH11]. A reference implementation of
our method will is published with the paper.

2. Related Work

Most existing facial landmark layouts have been derived empiri-
cally by placing landmarks either uniformly [KMS11, MJC∗08],
at locations with strong displacements [Wil90, CET98], at salient
positions of the face (MPEG-4) or a combination of these three
criteria [BBA∗07]. The layout of most active appearance models
(AAM) consist of 68 facial landmarks [MB04, GMC∗10] and cap-
tures eyelids, eyebrows, lips, the nose and the chin. In earlier work
[CET98,HLZC01] the sampling density of facial landmarks ranged
between 72-122, but the layout was nearly identical. This layout re-
mained largely unchanged until now because of annotated image
datasets, e.g. [AZCP13, KS14, WGJ17, DYOY18]. To overcome
the limitations of incompatible layouts, Sagonas et al. [SAT∗16]
developed an semi-supervised annotation tool and transferred dif-
ferent layouts [Mar98, KWRB11, BJKK11, MMK∗99, LBL∗12] to
a 68 facial landmarks layout. Other notable variations to the 68 fa-
cial landmarks layout are, e.g. [TKC01, CHZ14], where additional
landmarks are added at the cheeks and nasolabial folds (wrinkles
between nose and mouth corners). The landmark layouts computed
by our method are within the variation range of empirically derived
layouts. At the same time, our layouts show that the chin and nose
area are often over-sampled, and that cheeks or nasolabial folds
should be included. We observe also that empirical landmark lay-
outs tend to follow salient features of the static faces (e.g., tip of
the nose), rather than dynamic facial features.

Facial landmarks or markers also play an important role within
the computer graphics domain, since the pioneering work of facial
capturing with retro-reflective facial markers [Wil90]. Despite the
advantages of markerless facial capturing [ZTG∗18], professional
commercial solutions, e.g. VICON Cara or CubicMotion as well as
in-house tools in big VFX companies [SML16] still often operate
with visually distinctive features like dark points to compensate for
tangential drift in featureless areas like cheeks.
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While clear recommendations are given by [BB14] on which lo-
cations are best to capture the rigid motion of a head, a clear an-
swer is missing for dynamic faces. An often encountered strategy to
compute sparse landmark layouts is to first reduce the dimensions
of a dense motion dataset using PCA [CXZ∗02,LZWM06,WJZ13],
or a blendshape model [RGL15]. In a second step, the rows of the
PCA matrix are either clustered (k-means) or re-weighted to iden-
tify a representative set of landmarks. Please note that every vertex
of the 3D model is associated with a row of the PCA matrix. Unfor-
tunately, k-means clustering of high-dimensional vectors (3× num-
ber of principle components) is known to be error-prone [NJW01]
and is confirmed in our evaluation. Le et al. [LZD13], optimize
marker layouts for thin shell deformation, to approximate dense
4D sequences of facial performances. Unfortunately, in our experi-
ments the suggested block coordinate descent algorithm turned out
to be error prone to local minima and depends strongly on the ini-
tial landmark placement. Furthermore, facial animation based on
shape-interpolation is beyond the scope of their method (see Sec-
tion 4.2. in [LZD13]).

Optimizing marker layouts has also been addressed for captur-
ing the body and hands by improving the condition number of the
underlying inverse kinematics matrix [SWR∗18]. The equivalent
matrix for blendshapes is the delta-blendshape matrix [LAR∗14]
which contains all blendshape displacement without the neutral ex-
pression. In our tests we found that vertex displacements of one
blendshape tend to have similar directions and differ only by the
magnitude. In consequence, re-assigning a landmark to another ver-
tex will change the magnitude, but not the direction of the column
vectors and thus the condition number barely changes.

In this work, we focus on blendshapes, which is probably the
most frequent shape-interpolation method for facial expressions
in practice. Other local shape decomposition methods have been
suggested in the past [TDlTM11, BBB∗14] and variations of our
method are especially suitable for shape decomposition methods
where the local deformation differ spatially [NVW∗13, TGL∗18].
Sparse feature points can also serve as a representation basis in the
latent space of neural networks [WCL∗19, WML21], however this
direction is beyond the scope our our work, but offers a promising
direction for future work.

Concurrent to our work, quadratic integer optimization [KS21]
was suggested to optimize UI layouts for facial rigs. While the ob-
jectives of the two works is different, our method computes more
compact layouts (Fig. 1) on Epic’s Metahuman rigs (ca. 30 land-
marks vs 142 parameters). In addition, our linear formulation does
not require pre-processing operations like clustering to reduce the
number of vertex candidates and is magnitudes faster (1s vs 162-
553s).

To conclude, existing methods compute sparse landmark lay-
outs by sparsifing a dense 4D capture and thus compute a person-
specific layout. Apart from being personalized, the computed lay-
outs lack similarity with generalized, empirically derived lay-
outs. In contrast to previous work, landmarks computed by our
application-specific method highly correlate with semantically
meaningful locations, achieving closer resemblance to empirical
layouts. Our optimization computes a global optimum, and is of-
ten magnitudes faster.

Game VFX Toon 3D FACS

M=19/K=72 M=23/K=237 M=22/K=58 M=33/K=65

Modelled Scan Modelled Scan

Figure 2: Left: Compact layouts of facial landmarks for specific
animation models. Results are given for ε = 0.5. Right: A mini-
malistic layout derived from a FACS [EF78] model based on our
evaluation results (Section 4.2). M and K represent the number of
landmarks and the number of blendshapes of the animation model
respectively.

3. Minimalistic Facial Layouts

A blendshape model consists of a polygon mesh with a neutral ex-
pression and K blendshapes. The set of vertex positions for the neu-
tral expressions is {v0

1, . . . ,v
0
N}, with n being the vertex index. The

vertex displacement between blendshape k and the neutral expres-
sion is defined as: dvk

n = vk
n − v0

n. All vertex displacements of a
single blendshape form a delta-blendshape {dvk

1, . . . ,dvk
N}. In our

work, we optimize for a set of M feature points or 3D landmarks
F = {f1, . . . , fM}. On the one hand we aim to find a set with the
smallest number of landmarks. On the other hand, it must be guar-
anteed that facial motion will be reconstructed reliably from the 3D
landmarks.

Our proposed optimization method consists of two steps. First,
we identify potential candidates for facial landmarks and compute
their quality to reconstruct the captured facial motion (Section 3.1).
In a second step, we identify the best combination of all candidates
(Section 3.2), both in terms of the smallest number of facial land-
marks as well as their overall potential to reconstruct the facial an-
imation. Finally, we discuss practical extensions (Section 3.3) to
accomplish nicer layouts and improve robustness for performance
estimation.

3.1. Suitable Landmark Candidates

Starting with the general assumption that every vertex of the blend-
shape model could be a potential facial landmark, we aim to quan-
tify the quality of suitable candidates. Traditionally, the deforma-
tion of a blendshape only affects parts of the face. In consequence,
the weight for blendshape k can be only computed from landmarks
where the vertex displacement is dvk

n > 0. We save the information
whether a landmark is a suitable candidate for a blendshape or not
in a set of boolean variables {c1

n, . . . ,c
K
n } with ck

n ∈ {0,1}.

In addition, we save the quality of all vertices in a variable ω
k
n. By

quality we mean any numerical properties that predict how easy the
facial landmark can be captured or how robust is the computation
of blendshape weights from 3D landmarks. After testing various
metrics to estimate the quality ω

k
n of a facial landmark, which is
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Figure 3: Left: Ambient occlusion texture (cropped) and the differ-
ence between the pre-computed global visibility and the ambient
occlusion of the neutral expression. Right: The plotted number of
landmarks vs ε relationship.

discussed in Section 2 and Section 3.1.3, we identified global vis-
ibility ln (Section 3.1.2) and relative vertex displacement rk

n (Sec-
tion 3.1.1) as the most consistent and generic (Fig. 3). Both met-
rics are normalized, to ensure consistent results across different
characters and vertex numbers. Based on our experiments, equal
weighting (α = 0.5) is recommended. Examples for layouts com-
puted with different quality metrics are shown in Fig. 4.

ω
k
n = ck

n(2− (1−α)rk
n−αln), 0≤ rk

n, ln ≤ 1 (1)

3.1.1. Relative Displacement

In order to maximize the reconstruction of the animation, land-
marks should be placed where the vertex displacement is largest for
the individual blendshape. Independent of the tracking accuracy of
the landmark, the reconstruction error will be as small as possible if
we maximize the signal-to-noise-ratio. To account for blendshapes
with strong as well as subtle displacements, we preferred a rela-
tive vertex displacement measure rk

n for a specific blendshape k as
a quality metric for estimating the signal-to-noise-ratio.

rk
n =

∥∥∥dvk
n

∥∥∥
max

{∥∥dvk
1

∥∥ , . . . ,∥∥dvk
N

∥∥} , 0≤ rk
n ≤ 1 (2)

max
{∥∥∥dvk

1

∥∥∥ , . . . ,∥∥∥dvk
N

∥∥∥} denotes the maximum vertex displace-
ment of blendshape k along all vertices N. When computing the to-
tal quality of a landmark in (Eq. 1), we negate our relative displace-
ment weights, to comply with our optimization function (Eq. 5).

In addition, we define the variable ck
n based on the relative vertex

displacement rk
n. ck

n saves the information whether a vertex n fulfills
the minimal criteria for being a suitable landmark candidate for a
blendshape k.

ck
n =

{
0 rk

n < ε

1 rk
n ≥ ε

(3)

If rk
n is bigger than a threshold ε, this vertex is considered as a

possible candidate for reconstructing the weights of blendshape k.
Theoretically, 0 < ε ≤ 1, but based on our evaluation (Fig. 3, Sec-
tion 4) we recommend 0.3≤ ε≤ 0.7, depending whether accurate
reconstruction or a small set of landmarks is preferred.

3.1.2. Global Visibility

Occlusion is a well-known limitation when capturing the position
of facial landmarks. Predicting in advance whether a landmark will
be occluded during capturing is extremely challenging. However,

given the blendshape model, we have a proxy for the range of mo-
tion of the human face. Furthermore, we can assume that landmarks
are placed at semantically identical positions and expressions re-
main similar between the captured and animated face, e.g. a smile
should remain a smile. We take advantage of this information to
approximate the visibility of all possible candidates based on the
blendshape model.

Because the relative position of the camera(s) with respect to the
actor’s face is unknown in advance we compute the global visibil-
ity of a vertex. We check for possible self-occlusions by placing a
normal aligned hemisphere at the vertex and sample along all di-
rections of the unit hemisphere. The concept is equivalent to com-
puting ambient occlusion for every vertex in the context of ren-
dering [PJH16]. The luminance Lk

n for blendshape k and vertex n
computes the ratio of visible rays along the hemisphere. To esti-
mate the visibility of vertices across the entire range of motion of
the face, ambient occlusion is computed for every vertex and ev-
ery blendshape separately. From a capturing perspective we want
to avoid the worst-case scenario, where landmarks are completely
lost due to occlusion, therefore the smallest Lk

n is selected in the
end for each vertex (Fig. 3).

ln = min
{

L0
n, . . . ,L

K
n

}
(4)

In scenarios with known camera positions, like head-mounted
cameras, the visibilty term greatly simplifies. Instead of sampling
across the entire vertex-hemisphere, a single visibility check be-
tween the vertex and the camera is sufficient. The remaining com-
putations remain the same.

3.1.3. Discarded quality metrics

We tested SIFT features or perceptual mesh saliency [CSPF12].
In our experiments these metrics created a high percentage of
false positives. SIFT [Low04] features emphasize person specific
features (e.g. moles) that scale poorly across different identities.
Or the features are located at object silhouettes which are view-
dependent and non-stationary with respect to the surface. Mesh
saliency [CSPF12] which is largely based on mean curvature and
Gaussian curvatures [Rus04] preferred undesired landmark loca-
tions inside of folds or inside the nose. We also discovered that
other intuitive salient features, like the tip of the nose or the left and
right corners, are misleading as their deformation is relatively small
during facial motions. Other metrics like the condition number did
not improved out results further (see Section 2). Please notice that
previous work [CXZ∗02,LZD13,RGL15] on facial landmark com-
putation is only based on vertex displacements.

3.2. Minimalistic Set of Landmarks

After refining the potential candidates for suitable landmarks, we
obtain two sets for each vertex n: (i) {c1

n, . . . ,c
K
n } defines whether

this vertex fulfills the minimal criteria to represent a blendshape
k or not, and (ii) {ω1

n, . . . ,ω
K
n } defines the quality of representing

a specific blendshape. Out of all landmark candidates, we search
for a combination with the smallest number of landmarks and good
reconstruction properties of the facial animation. This problem is a
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Figure 4: Visual comparison of layouts for the Game model with 72 blendshapes and ε = 0.5. M represents the number of landmarks.

variation of the NP-hard set cover problem [Kar72] which can be
formulated as a boolean linear program.

min
fn

N

∑
n=1

fn
K

∑
k=1

ω
k
n , withω

k
n ≥ 0 (5a)

s.t.
N

∑
n=1

ck
n fn ≥ 1 , for allk ∈ K (5b)

fn ∈ {0,1} , for all n ∈ N (5c)

The unknown boolean variables fn specify whether a vertex will
be selected as a landmark or not and our objective is to minimize the
function 5a. In addition, K linear constraints (Eq. 5b) enforce that
at least one suitable landmark is selected for each blendshape. If
we ignore for a second the importance weighting factor ω

k
n, Eq. 5a

would search for a landmark set with the smallest number of land-
marks. By adding the importance factor ω

k
n, we favor landmark

locations with greater visibility and larger relative displacements.
Consequently, these landmarks are easier to track and allow more
robust reconstruction of the facial animation. Compared to the un-
weighted case, the downside of individual importance weights is
that the overall number of landmarks may increase slightly. Once
all fn are computed, the final landmark set is identified by the index
n. All selected landmarks form the set F = {f1, . . . , fM}. Fig. 4 vi-
sualizes the influence of the different weighting terms on the final
landmark placement and Fig. 5 the energy distribution of a single
vertex.

In contrast to previous work [CXZ∗02, LZWM06, LZD13,
SWR∗18] we do not set the number of landmarks directly. This
eliminates the need, e.g. in k-means clustering, to test different
numbers of clusters to identify the best separation. Instead the num-
ber of landmarks is part of our minimalistic landmark optimization
that, by construction, guarantees that a suitable landmark exists to
control each blendshape. The number of landmarks is indirectly
controlled by setting ε (Fig. 3) and by modifying the importance
weight ω

k
n (Eq. 1, 3).

3.2.1. Solver

Despite being NP-hard, a global optimal solution is computed in
only a few seconds using state-of-the-art mixed integer solvers like
CPLEX. Besides the number of vertices and blendshapes, the actual
blendshapes have an impact on the solver’s performance. Current

integer solvers reduce the search space in advance by selecting ver-
tices with the smallest importance weight if several vertices have
identical sets of landmark candidates {c1

n, . . . ,c
K
n }.

3.3. Practical Extensions

Existing facial landmark layouts tend to reflect the left and right
symmetry of the face. In the following, we discuss how to achieve
symmetric facial landmark layouts even for non-symmetric faces
and the placement of additional landmarks beyond the minimal re-
quirements.

3.3.1. Symmetry

To achieve symmetric layouts (Fig. 4, middle right), some pre-
processing of the blendshapes is required. First, we compute sym-
metric vertex pairs between the left and right side of the face. Sec-
ond, we compare the vertex displacements between the left and
right side of the face. The bigger vertex displacement dvk

n is as-
signed to the vertex of the right side of the face, while the left side
is set to 0. This procedure is performed for every blendshape k sepa-
rately. After pre-processing the blendshapes, the minimalistic land-
mark layout (Eq. 5) is computed as described previously and at the
end, all landmarks are mirrored to the left side.

Figure 5: Importance weights (normalized) for a selected land-
mark on the VFX (top) and Toon (bottom) models. Similar color
encoding on nearby vertices indicate that small shifting of land-
mark location may still create nearly optimal layouts.
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3.3.2. Adaptive Multi-Cover Sets

The minimalistic layout, computed in the previous section, only
guarantees one representative landmark for each of the blend-
shapes. Due to unpredictable occlusions (e.g. by a person’s hand)
or to improve reconstruction accuracy, it might be sensible to in-
clude more landmarks for each blendshape. Extending a set-cover
problem to a multi-cover problem by setting ∑

N
n=1 ck

n fn ≥ 2 in
Eq. 5b is trivial. Unfortunately, the result is unsatisfactory, as two
nearby vertices will be selected instead of one (Fig. 4, “Distance
Off”). In addition, we tested refining the initial layout using parti-
cle swarm optimization [SWR∗18] in combination with a energy
term maximizing the distance between two landmarks. Landmarks
are placed better than for the trivial multi-cover formulation, but
also a bit random. We therefore recommend to run the single-cover
optimization (Section 3.2) multiple times and update at each itera-
tion the set of potential landmark candidates as well as blendshapes
requiring additional landmarks (see Algorithm 1, and Fig. 4, “Dis-
tance On”)). Advantages of this approach are: minimal implemen-
tation overhead, fast run-times and possible adaptive oversampling,
where the space constraints are sufficient.

After computing suitable candidates for the landmarks (Eq. 3)
and their respective quality (Eq. 1), the following changes are re-
quired to the single-cover algorithm:

1. Remove vertices with assigned landmarks from the set of poten-
tial candidates by setting {c1

n, . . . ,c
K
n }= 0.

2. Remove vertices within the neighborhood of assigned land-
marks from the set of potential candidates by setting
{c1

n, . . . ,c
K
n }= 0

3. Exclude all blendshapes from Eq. 5 where no potential candi-
date for suitable landmarks exists or that have sufficient land-
marks.

4. Compute the minimalistic layout by solving Eq. 5 and add the
computed landmarks to F .

All enumerated items are encapsulated in a for-loop (see Algorithm
1), which is executed until no suitable landmark candidate exists for
any blendshape, or a maximum number of landmarks per blend-
shape is reached.

In our experiments we notice that one representative landmark
leads to accurate reconstructions of expressions where blendshapes
are distinctive (e.g. eyes, eyebrows) but not so, if many similar
blendshape have large overlapping areas (e.g. mouth). To balance
between minimalistic layouts and good reconstruction quality of
the facial performance, we recommend that statistically one unique
landmark should not be assigned to more than 10% of blendshapes
and more landmarks should be added where this condition is vi-
olated (Fig. 4, “Adaptive”). Such a heuristic can be added in the
adaptive multi-cover algorithm when the set of blendshapes is re-
duced (Algorithm 1, l.13).

4. Evaluation

Data We test our algorithm on four representative blendshape
models (Fig. 2) and two of Epic’s Metahuman characters (Fig. 1).
Our selection covers scan based and hand-modelled characters, var-
ious application cases (VFX, games, computer vision), stylizations

Algorithm 1 Adaptive Multi-Cover
1: F = ∅ . final landmarks
2: ck

n = Eq. 3 . suitable candidates (boolean)
3: K̄ = {1, . . . ,K} . blendshapes missing landmarks
4: imax . max number of landmarks/blendshape
5: for i = 1, . . . , imax||K̄ = ∅ do
6: for n = 1, . . . ,N do . update suitable candidates
7: if vn ∈ F then . discard landmarks
8: {c1

n, . . . ,c
K
n }= 0

9: end if
10: if vn close to F then . discard nearby landmarks
11: {c1

n, . . . ,c
K
n }= 0

12: end if
13: end for
14: for k = {1, . . . ,K} do . update set of blendshapes
15: if {ck

1, . . . ,c
k
N}= 0 then

16: remove k from K̄
17: end if
18: end for
19: F += Eq. 5 w.r.t. ck

n and K̄
20: end for

(realistic and cartoon), as well as moderate to high numbers of
blendshapes (up to 237). One advantage of our method is that it
is suitable for non-realistic characters as long these follow human
motion principles and proportions. Additional visual examples are
provided in the supplemental material.

4.1. Comparison to Previous Work

We compare our landmark placement to all dedicated methods for
facial landmark placement that we are aware of, which are surpris-
ingly few. Cohen et al. [CXZ∗02] cluster the rows of the PCA ma-
trix and Reverdy et al. [RGL15] the delta-blendshape matrix. Le
et al. [LZD13] minimize the error of a surface deformation model
and in Sorkine and Cohen-Or [SC04] landmarks are placed where
the reconstruction error of the surface deformation model is largest.
All previous methods take vertex displacement into account. Some
approaches support symmetric layouts. Landmark visibility is ne-
glected by all previous methods. For a fair comparison, optimal
landmark layouts are computed only based on vertex displacement
for all test-cases. In addition, all vertices that have no displacement
across all blendshapes (ε < 0.01) have been removed from the op-
timizations. In our implementations we followed closely the cited
publications and recommended settings. Testing revealed that most
methods converged well despite different initialization values. Only
the results of Le et al. [LZD13] were prone to local minima and the
final results were highly sensitive to the initial landmark placement,
making it difficult to quantify the performance (Fig. 6).

The computation time of all algorithms largely depends on the
number of linear systems to solve. For our method, we solve one
boolean linear system (CPLEX, 0.63s), Cohen et al. [CXZ∗02]
compute a singular value decomposition (Eigen, 33s). Sorkine and
Cohen-Or [SC04] solve M times a sparse linear system (Eigen,
overall 22s), while for Le et al. [LZD13] the same sparse linear
system is solved ten times M, where ten is the recommended num-
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Reverdy Cohen Sorkine
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Figure 6: Comparison of layouts computed by different methods
based on vertex displacement only on (top) Game, (middle) Toon
and (bottom) VFX models. Number of landmarks M is constant in
each row.

Last row shows the results of Le for different initialization setups
(row above). Our method computes the most symmetric and
balanced layouts even without additional constraints. Some

landmarks may be hidden from camera view.

ber of iterations (Eigen, overall 165s). All listed timings were mea-
sured for the VFX-model and a computer with an Intel i7-8550U
CPU. Visual examples of the computed layouts are provided for all
methods in Fig. 6.

Statistical Data Statistical analysis can quantify well the worst
case scenarios within a set of landmarks. Scenario 1: Landmarks
are placed where no blendshape has a strong displacement. Such
landmarks will have only little impact on the final animation, e.g.,
computing blendshape weights for the lip blendshapes from land-
marks placed at the cheeks. Scenario 2: A blendshape does not have
any landmarks within the area of moderate or strong displacement
and therefore will not be activated during animation. To quantify
existing and computed layouts, we set ε = 0.3 for a moderate cut-
off value. For completeness, we also add a strong cutoff value of
ε = 0.7, however, the implications are slightly different. A small
number of landmarks or blendshapes for ε = 0.7 means that land-
marks are extremely well placed. It does not indicate anymore that

 

 

 

 

 

 

 

0%

20%

40%

60%

80%

percentage of landmarks without representative blendshape:

percentage of blendshapes without representative landmark:

moderate strong

moderate strong

Figure 7: Orange: The percentage of landmarks located at ver-
tices where no blendshape has a strong (ε > 0.7) or moderate
(ε > 0.3) displacement. Captured animation will be transferred in-
accurately for these landmarks after retargeting. Blue: The num-
ber of blendshapes that have no landmarks located at vertices with
strong (ε > 0.7) or moderate (ε > 0.3) displacements.

bad cases exist. Fig. 7 shows diagrams for all test-cases. Please
note that methods based on clustering [CXZ∗02, RGL15] place
10-20% of the landmarks where no blendshape has a moderate or
strong displacement (Fig. 7).

In the case of existing facial landmark layouts, such
as AR [Mar98], AFLW [KWRB11], LFPW [BJKK11],
XM2VTS [MMK∗99] or even the common 68 facial land-
marks of AAMs (MultiPIE [GMC∗10]), we observe that 15-30%
of landmarks provide little or no information for facial animation
(Fig. 8, left/orange bars). In addition, a representative landmark for
(almost) each blendshape exist only for layouts with high numbers
of landmarks (LFPW, XM2VTS, MultiPIE, MPEG-4). Common
placement of unused landmarks in existing layouts are: ears and
chin, corners of eyelids, and the ridge of the nose. We also observe
substantial oversampling for the chin, nose and eyebrows, while
cheeks and nasal folds are largely ignored. In contrast, our layouts
achieve good statistical scores with substantially less landmarks.

Ground Truth Comparisons For ground truth comparisons, a
blendshape model is animated first by activating individual blend-
shapes or pairs of blendshapes. In a second step, landmarks are ex-
tracted for different layouts and the original motion is reconstructed
by solving a non-negative least-square problem [LAR∗14]. The re-
construction error is smallest for our method among all existing
optimization methods (Fig. 9). Comparing the results of all meth-
ods, we notice that especially if a representative landmark for one
blendshape is missing, the expressions are not well reconstructed.
Notice that this observation is equivalent to leaving one out tests.
Compared to existing empirical models, we achieve visually indis-
tingushable results with only 38% of the landmarks (26 vs. 68).
The root-mean-square error (RMSE) is on par with empirical lay-
outs, while using only 56% of the landmarks (39 vs 68). The ab-
lation study (Fig. 11) shows further that if we remove landmarks,
but still try to keep the maximum number of representative land-
marks, the reconstruction error will be smallest. The supplemen-
tal material provides additional comparisons, where we simulate
inaccurate landmark placement by shifting the landmarks (supple-

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.



E. Zell & R. McDonnell / Compact Facial Landmark Layouts

0%

10%

20%

30%

40%

moderate (ε=0.3) strong (ε=0.7) moderate (ε=0.3) strong (ε=0.7)

percentage of blendshapes without a representative landmarkpercentage of landmarks without a representative blendshape

AR AFLW LFPW XM2VTS MultiPIE MPEG-4 ε = 0.3 ε = 0.5 ε = 0.7

M = 20 M = 18 M = 33 M = 67 M = 68 M = 72 M = 16 M = 19 M = 26

Annotated Facial Datasets Ours

Figure 8: Top: Statistical data for different layouts shown below. Bottom: Visual comparison of landmark layouts used in annotated com-
puter vision datasets, the MPEG-4 standard, and our method (symmetric layout) for the Game model. In existing layouts, about 15-30% of
landmarks are located were no blendshapes have at least moderate (ε > 0.3) displacement. At the same time, our layouts provide substantial
information to all blendshapes, but use only 50% of the landmarks of existing layouts.
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Figure 9: Root-mean-square error (RMSE) in mm between ground
truth and reconstructed animation. Reconstructed expressions are
shown for the marked frame (dotted line).

mental video). While this introduces small numerical errors, the
reconstructed animation is still accurate.

4D Data Retargeting To compare different landmark layouts with
real data we retarget to one 4D sequence of Zhang et al. [ZSCS04]
consisting of different combinations of facial expressions. In a pre-
processing step we register non-rigidly [LSP08] the neutral ex-
pression of the male blendshape model from Fig. 1 to the neu-
tral expression of the 4D sequence. In a second step, we estab-
lish dense one-to-one correspondences between the neutral ex-
pressions and transfer the topology of the blendshape model to
the entire 4D sequence. Furthermore, personalized blendshapes for
the 4D model are created using deformation transfer [SP04]. The
dataset consists of 384 frames and 157 blendshapes, all of equal
topology and identical vertex set. For the evaluation, we com-
puted landmark layouts with our single cover method and dedi-
cated algorithms [CXZ∗02,SC04,LZD13,RGL15] all with 27 land-
marks (see Fig. 12). Because the method of Le et al. [LZD13]
turned out to be prone to local minima and strongly depends on
the initial landmark placement, three different initialization layouts
[CXZ∗02, SC04, RGL15] were tested. For further comparison, we
computed two adaptive layouts where each blendshape has up to
two representative landmarks. For the evaluation, the blendshape
model was fitted towards the 4D sequence by minimizing the dis-
tance between the respective sparse landmarks. Our results show
that, the root-mean-square error (RMSE), computed for all frames
and vertices between the reconstructed expression and the 4D se-
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Actor Superset MPEG-4 ε = 0.7 ε = 0.5
Multiset
ε = 0.5

M = 60 M = 44 M = 27 M = 20 M = 34

Figure 10: Top: Visual comparison of the actor and reconstructed
animation from facial landmarks on the VFX model. The super-
set is the combination of all layouts. For the MPEG-4 layout only
44 out of 72 marker could be captured because either the vertices
were static (ears), markers were impossible to place (inner lips),
or remained hidden due to strong self-occlusion markers (eyelids).
Despite using only a fraction of landmarks, expressions are recon-
structed faithfully. Eyes were animated procedurally. Examples are
(roughly) ordered from top to bottom by increasing intensity of fa-
cial expressions.

0

0.1

0.2
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0.4

0.5
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0.7
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24 landmarks

21 landmarks (min)

18 landmarks (min)

21 landmarks (max)

18 landmarks (max)

Figure 11: Ablation study: We compare the reconstruction accu-
racy on our compact layout with ε = 0.7 and M = 24, against lay-
outs where three or six landmarks have been removed. Landmark
layouts are shown on the left. Layouts annotated with max, cover
the maximum number of landmarks (M = 21 - without light blue
landmarks, M = 18 - without dark and light blue landmarks), while
layouts annotated with min, cover the smallest number of land-
marks (M = 21 - without light green landmarks, M = 18 - without
dark and light green landmarks).

quence is smallest for our layout. Interestingly, the reconstruction
error for Le et. al [LZD13] is worse than the initialization layout
in all cases. Landmark layouts using our adaptive multi-cover al-
gorithm had comparable to smaller RMSE. Comparison between
the single cover (ε = 0.7, M = 27) and the adaptive multi-cover
(ε = 0.5, M = 46) results indicates that a high ε is more beneficial
than having additional landmarks in combination with a smaller ε.
Overall, the results support our initial hypothesis from Section 3.1.1
on the importance of relative blendshape displacements for accu-
rate recovery of facial expressions.

Sparse Animation Reconstruction Finally, we compare our lay-
outs under real conditions with a VICON tracking system. A super-
set layout is constructed by considering different layouts by vary-
ing ε and the MPEG layout, which had the lowest number of blend-
shapes without a representative landmark. For practical reasons, the
construction of the superset required to merge nearby landmarks to
one or to shift their location slightly. For animation reconstruction,
we follow closely the recent method of Ribera et al. [RZL∗17].
This test is the most difficult, because it combines inaccuracies in-
troduced by manual marker placement and retargeting issues be-
tween different characters. Fig. 10, 13 and the supplemental ma-
terial show the results, where the superset layout serves as a base-
line. Overall, the semantics of the animation were well preserved in
all configurations, despite a significantly smaller number of land-
marks. For moderate facial expressions, the difference between the
results using the superset layout (baseline) and our layout is small
to invisible. For exaggerated expressions, that are always challeng-
ing in retargeting scenarios, the visual differences become more
noticeable, especially around the mouth, but the overall expression
remains largely the same.

4.2. Minimalistic Layout for FACS

Our method computes minimalistic layouts for each blendshape
model. At the same time we acknowledge the value of standard-
ized landmark layouts, like MPEG-4 or MultiPIE. Considering the
Facial Action Coding System [EF78, EHF81] as the most agreed
semantic decomposition of facial expressions in computer sci-
ence and psychology, we built a fully FACS compliant blendshape
model, based on the FLAME/3D FACS dataset [LBB∗17,CKH11].
For reference purposes, we computed symmetric landmark layouts
with different settings for ε (supplemental material). Despite best
efforts, a noticeable discrepancy existed between the layouts com-
puted for the FACS model and the previously mentioned, FACS in-
spired, blendshape models (Fig. 2). Reasons for discrepancy could
be missing posing accuracy, registration and blendshape decom-
position artifacts or simply the difference between real FACS and
idealized blendshapes(Fig. 14). To propose a more general layout
for facial animation, we slightly modified the layout of the FACS
model with ε = 0.6 (Fig. 2, Right and supplemental video).

5. Conclusion

In this paper, we proposed a novel algorithm for computing min-
imalistic facial landmark layouts specific to a blendshape model.
Our computed layouts are more compact than empirically derived
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Our Le, initialization from: Our adaptive

single Reverdy Cohen Sorkine Reverdy Cohen Sorkine ε = 0.5 ε = 0.7

M = 27 M = 27 M = 27 M = 27 M = 27 M = 27 M = 27 M = 46 M = 62

Ground
Truth

RMSE 0.1450 0.1485 0.1777 0.2803 0.1620 0.1819 0.2853 0.1462 0.1411

0.05

0.15
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0.35

0.45

0.55

0.65

Reconstruction error full sequence
Our adaptive(ε = 0.7) Reverdy Cohen Sorkine Le (after Reverdy) Our (ε=0.7)

Figure 12: Comparison against 4D data. Top row: Facial landmark layouts, consisting of M = 27, M = 46 or M = 62 landmarks in total,
computed by respective methods for a male blendshape model from Epic’s Metahuman (Fig. 1) with 157 blendshapes. Lower rows: The
total RMS-error for the entire sequence, error maps for selected frames and error-distribution over the sequence after reconstructing the 4D
sequence with a personalized blendshape model.

layouts, have a small reconstruction error and create more plau-
sible results than previous methods. Furthermore, we have shown
that our method can derive layouts from FACS [EF78], which of-
fers high potential to derive better standards for facial landmarks.
The latter is currently the method of choice for facial animation.
The novelty of our contribution is the insight that information loss
is inevitable during the mapping to a low dimensional blendshape
model paired with the careful exploration of how this affects the
entire facial animation pipeline. Our analysis facilitated the formu-
lation of the problem to find a minimal landmark layout as a linear
integer optimization.

Comparing our results with existing facial landmarks or facial
landmark layouts reveals that especially the chin, eyebrows, and
parts of the nose are often over-sampled and the cheeks under-
sampled. The required total number of facial landmark could be
smaller than existing empirical layouts indicate which offers a large
potential to save resources when annotating large face datasets.

Direct blendshape manipulation methods [LAR∗14] could also
profit from optimal landmark layouts as this reduces the number
of handles to control. Certainly, facial animation compression is
not the main scope of our work, but it remains remarkable that the
memory required to save the landmark positions of our layouts is
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Superset MPEG-4 ε = 0.7 ε = 0.5

Figure 13: Heat-maps showing the RMSE-error and the corre-
sponding reconstructed frame. The superset serves as the baseline
for comparison. The visible discrepancies between reconstructed
frames are smooth deformations and thus remain barely noticeable
on the textured character.

weight map AU 43 AU 22 AU 12L

Figure 14: Examples of: (left) a weight map for FACS decomposi-
tion, (middle) present registration artifacts in the FLAME/3D FACS
dataset for Action Unit 43 which encodes a closed eye, (right) two
successfully decomposed action units (AU22, AU12L).

comparable or even smaller than the memory requirement to save
the blendshape weights (3M similar or less than K).

Finally, the approach of defining suitable landmarks to drive spe-
cific blendshapes can be exploited in cases of partial facial occlu-
sion either due to hands, small objects, the presence of glasses, or
VR headsets. If parts of the face are occluded, our metrics allow a
differentiation between blendshapes that can be computed reliably
from the visible face and those which should be estimated based on
motion priors. In order to facilitate future work, a reference imple-
mentation of our method and references to the blendshape models
will be published with the paper.
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