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Figure 1: By combining and deeply integrating depth-from-stereo with photometric stereo, and by exploiting the visual structure introduced
by self-shadowing we create accurate 3D reconstructions with accurate handling of depth discontinuities.

Abstract
Photometric stereo is a well-established method with outstanding traits to recover surface details and material properties, like
surface albedo or even specularity. However, while the surface is locally well-defined, computing absolute depth by integrating
surface normals is notoriously difficult. Integration errors can be introduced and propagated by numerical inaccuracies from
inter-reflection of light or non-Lambertian surfaces. But especially ignoring depth discontinuities for overlapping or discon-
nected objects, will introduce strong distortion artefacts. During the acquisition process the object is lit from different positions
and self-shadowing is in general considered as an unavoidable drawback, complicating the numerical estimation of normals.
However, we observe that shadow boundaries correlate strongly with depth discontinuities and exploit the visual structure in-
troduced by self-shadowing to create a consistent image segmentation of continuous surfaces. In order to make depth estimation
more robust, we deeply integrate photometric stereo with depth-from-stereo. Having obtained a shadow based segmentation of
continuous surfaces, allows us to reduce the computational cost for correspondence search in depth-from-stereo. To speed-up
computation further, we merge segments into larger meta-segments during an iterative depth optimization. The reconstruction
error of our method is equal or smaller than previous work, and reconstruction results are characterized by robust handling of
depth-discontinuities, without any smearing artifacts.

CCS Concepts
• Computing methodologies → Reconstruction; Image segmentation; Shape inference;

1. Introduction

Accurate reconstruction of 3D shape and appearance is a funda-
mental research problem with many applications beyond graphics.
Photometric stereo and photogrammetry are well-established and
among the most popular methods, each coming with its benefits and
disadvantages. While photometric stereo is the method of choice
to capture stunning surface details as well as accurate albedo tex-

tures and material properties, photogrammetry estimates absolute
depth more robustly. Not surprisingly, combinations of both meth-
ods have been suggested to counteract the shortcomings of each
approach, where e.g. shape-from-silhouette [LMC19] serves as a
3D shape proxy. Even recent high-end solutions [GLD∗19] design
the 3D reconstruction as a two-stage process where a coarse 3D
model is reconstructed from depth-from-stereo and surface details
are added by photometric stereo.
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Algorithms, where the building blocks of photometric stereo
and photogrammetry are fully integrated at a deeper level, lifting
the true potential of the synergies, are less common. Lightcodes
[SNA∗21] or photogeomtric scene flow [GSSM15] are among the
few examples. While lightcodes extend the pixel-wise matching
to all lighting conditions, photogeometric scene flow, replaces the
smoothness term in multi-view stereo with the locally defined sur-
face information from photometric stereo. Our work extends pre-
vious contributions, by identifying continuous surfaces and depth
discontinuities at an early stage via a shadow-based segmenta-
tion. Starting from the rather trivial observation that objects located
closer to the camera are fully illuminated, but cast shadows on ob-
jects further away from the camera, we identified that depth dis-
continuities correlate strongly with shadow boundaries. To exploit
this correlation algorithmically, we divide the image into segments
based on the structure introduced through self-shadowing. The de-
rived content sensitive image segmentation is, at least in theory,
independent of the image resolution. We take advantage of this
compact data structure in our variation of the depth-from-stereo
algorithm and match segments instead of pixels.

While in classical photometric stereo self-shadowing is consid-
ered as an unavoidable downside, our approach turns it for the
better and utilizes the additional information to identify reliably
depth discontinuities. Therefore, addressing an important property
for more accurate 3D reconstructions from photometric stereo. Re-
sults and comparisons show that our method outperforms state of
the art methods especially in challenging scenarios for photometric
stereo with many depth discontinuities.

2. Related Work

Photometric stereo is best understood as inverse rendering; images
taken from the same viewpoint but under different lighting condi-
tions are used to recover parameters such as surface normals, tex-
ture albedo and sometimes even specularity. Applications of pho-
tometric stereo range from detailed acquisition of small objects
[LMC19], humans [VPB∗09,GSSM15] to buildings [SSB∗14]. An
in-depth overview on photometric stereo can be found in a sur-
vey [AG15] and we focus in this section on the most relevant work
to ours. A serious limitation of photometric stereo is that depth can
only be estimated up to a relative scale. A common strategy is there-
fore to refine the geometry of low-resolution scans, e.g. structured
light [NRDR05], laser scanner [BFR14] or low-resolution depth-
from-stereo [JK07] with photometric stereo. With the popularity of
normal maps in rendering pipelines, it became more practical to
compute the normal map and use it directly within the shader for
high-quality visualizations [PSM∗16, GLD∗19].

If the object category is known in advance or is largely con-
vex, a template model (e.g. a generic face) [WGTS13], or an ini-
tial 3D model based on shape from silhouette [HVC08, VPB∗09,
PSM∗16, LMC19] is refined by photometric stereo. Hernandez et
al. [HVC08] use a setup combining multiview with photometric
stereo. Their approach operates directly on a mesh using the vi-
sual hull as an initial shape estimate and does not require knowl-
edge about the light or camera positions. Similarly, Vlasic et al.
[VPB∗09] use the visual hull to get an initial depth estimate which
is then refined first by means of photometric stereo and later by

matching the surfaces obtained from different views. Different to
Hernandez et al. [HVC08] their method addresses depth disconti-
nuities using a threshold value in combination with the visual hull.
Other methods use a two-stage approach of multi-view-stereo with
photometric stereo [GT15] or refine depth using back-projection
and a brute-force approach on the GPU [GWT∗18]. Logothetis et
al. [LMC19] extend multi-view stereo and photometric stereo to
non-Lambertian surfaces. Again starting from a rough shape esti-
mate of their model, they use photometric stereo to directly com-
pute signed distance functions, effectively refining the geometry in
each step. Shadow masks are estimated at each iteration to calculate
the self-shadowing based on the current geometry.

More similar to our work, Du et al. [DGS11] use two cam-
eras in conjunction with photometric stereo and incorporate a fil-
ter based approach which has the benefit of being convex but does
not scale well to higher resolutions. Gotardo et al. [GSSM15] com-
bine photometric stereo with stereo vision to reconstruct dense fa-
cial animations. Their method is based on a combination of col-
ored lights, to effectively capture three lighting conditions in a sin-
gle frame, together with optical flow, to combine lighting condi-
tions from neighbouring frames. Quantitative comparison between
our method and the work of Gotardo et al. [GSSM15] (Section
6) show that our method is more accurate at depth discontinu-
ities and more reliable for slanted surfaces, while both methods
achieve similar performance for smooth, camera-facing surfaces.
Some authors focus on special topics in photometric stereo, like
robust normal integration without [QDA18,CSFM21] and with ad-
ditional handling of discontinuities [XWW∗19]. Others suggest to
increase the number of light conditions for small image sets, re-
lying on RGB color space [GSSM15] and multi-spectral cameras
[ZDJ∗20]. Recently convolutional neural networks gained attrac-
tion within the photometric stereo community, mainly to predict
normals for non-Lambertian surfaces, facilitate arbitrary BRDFs
[Ike18, LBMC20, SSS∗20, YLF∗20] or jointly optimize for light
positions and normals [KKO∗21].

Within the depth-from-stereo field, most publications leading
public benchmarks, e.g. [THZ∗21] are based on convolutional neu-
ral networks (CNN) and a still very recent overview is given by
Laga et al. [LJBB20]. While these methods typically deliver a great
performance in terms of both, runtime and matching quality, they
also come with their downsides: The maximal resolution and base-
line is typically limited by available GPU-memory. The underly-
ing 3D convolutions quickly consume a lot of memory. Images of
2000x2000 pixels are considered as big and a baseline of roughly
200px is the standard. In addition, requiring training data with very
precise depth/disparity information leads in practice either to using
a large data set generated from synthetically generated data (e.g.
SceneFlow [MIH∗16]) or a small data set obtained from scans of
real world objects (e.g. KITTI [GLU12]). Both datasets struggle
to represent the virtually infinite variety of image configurations
(lighting, occlusions, etc.): The latter simply by number, the former
due to the remaining gap between synthetic and real data (domain
gap) [SYZ∗21].

Image segmentation to improve stereo matching was suggested
previously by a number of methods [HC04, KSK06, WL11], all
sharing similar principles: After searching for the optimal dispar-
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Figure 2: Overview of our algorithmic flow: For each camera view, we first estimate normals, albedo and shadow masks and separate the
image into smaller, semantically plausible segments. We then iteratively refine the depth for each segment by minimizing the integration error
and matching energy between botch camera views.

ity for each individual pixel, a segmentation is constructed based
on color uniformity, e.g. using mean-shift filtering, without further
taking the 3D shape structure into account. The disparity values in
each segment are used to construct (several) disparity planes for
each segment. These disparity planes are then propagated to neigh-
bouring segments through graph cuts or believe propagation. A fun-
damental shortcoming of these algorithms is the assumption of flat
segments. PatchMatch [BSFG09,BRR11], overcomes this problem
by using a disparity plane per pixel instead of per segment. At each
iteration, a set of candidate disparity planes is generated and the
best one is adopted. Later extensions [GLS15, LZYZ16, RM19]
proposed variations for candidate generation, ranging from estimat-
ing based on local neighbourhood, random perturbations or projec-
tions from different views. One downside of PatchMatch and simi-
lar methods is the missing support to encourage smooth, continuous
surfaces.

The most similar depth-from-stereo method to ours, was intro-
duced by Taniai et al. [TMSN17]. Like PatchMatch, it uses pixel-
wise disparity planes but iteratively refines them in pixel-blocks
via expansion moves, thus overcoming the smoothness prior limi-
tation. By combining photometric stereo with a shadow based seg-
mentation, and iteratively refining the depth over all segments, we
reduce the dimensionality of the matching problem. Furthermore,
our method outperforms the reconstruction quality even of learn-
ing based depth-from-stereo methods. ShadowCut [CAK07] intro-
duces a robust shadow detection for photometric stereo by using
graph cuts which we adopt in our approach. Different to Shadow-
Cut, we rely on depth-from-stereo for accurate, absolute depth re-
construction instead of relying on a single underconstrained view.
Detecting depth-discontinuities from shadow contours was intro-
duced in the context of non-photorealistic rendering [RTF∗04].

Compared to our method, we can report that this approach re-
duces the initial number of segments even further. However, it is
more prone to missing depth discontinuities, causing diminishing
reconstruction results. Our more defensive approach to rather over
segment at the beginning and quickly merge nearby segments into
larger meta-segments seems to be more advantageous in this case.

3. Overview

For our capturing setup, we assume that images are taken under dif-
ferent lighting conditions, by a calibrated stereo camera, implying
that camera intrinsics and extrinsics are known. During capturing
only one light is switched on for each frame. The intensity of all
lights is equal and all lights are placed on a hemisphere around
the object, such that the distance between the object and the light
is equal as well. Having obtained a set of images with an object
lit under different conditions, we compute normals, albedo (Sec-
tion 4.1), and shadow masks (Section 4.2) within an alternating op-
timization framework. In a follow-up procedure we estimate depth
from stereo views, where we first segment the image based on the
structure introduced through self-shadowing (Section 5.1). We then
refine the depth of each segment (Section 5.4) relying on the inte-
gration of normals from photometric stereo (Section 5.3) and by
matching segments between the left and right camera views (Sec-
tion 5.2). Dividing the image into segments has the advantage that:
(a) the search space is defined by the number of segments instead of
the number of image pixels, (b) depth discontinuities are detected
and handled correctly from the beginning, and (c) large continu-
ous surfaces remain connected during the optimization. Once the
segment-wise optimization converged, we address small disconti-
nuities between segments, e.g. due to discretization errors, in an
additional post-processing step (Section 5.5).
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4. Normal and Shadow Computation

In line with many previous publications on photometric stereo,
e.g. [AG15], we assume a Lambertian surface, where the measured
light intensity i of a pixel is given by i = α(l ·n). The light vector
l, describes both the direction and the brightness of the incoming
light and the albedo α is a material constant determining the frac-
tion of light that is reflected. The light vector can be sufficiently
estimated from the light positions, which implies that the light po-
sitions are known for the setup or were obtained in advance during
a calibration procedure. In general, each color channel of a pixel
has its own albedo, but for normal reconstruction, using multiple
color channels has no advantage over using just a single channel.
When the pixel-wise intensity is measured in RGB space, we con-
sider only the luminance of the YUV color space for normal com-
putations to save memory and derive the RGB albedo after the 3D
reconstruction (Section 5.5).

We summarize pixel-wise intensities under different light condi-
tions within a single intensity vector i = (i1, ..., iL)

t and introduce
a binary shadow mask s = (s1, ...,sL)

t to exclude pixels in shadow
from normal estimation, where

sl =

{
0 if the pixel is in shadow for light l,
1 else.

Especially on discontinuous surfaces, that we aim to reconstruct,
self-shadowing is very present and must be addressed explicitly to
retain the assumptions of the Lambertian reflectance model.

4.1. Normal Update

To compute shadows, normals and albedo, we employ an alternat-
ing optimization method, where we exploit the observation that bi-
nary shadows spread across several pixels (Section 4.2), while nor-
mals and albedo change more from pixel to pixel. When estimating
the normals and albedo, the shadow mask remains fixed. The pixel-
wise energy term minimizes, the squared error between the shading
model prediction and the observed pixel intensities

Ψ(α,n,s) = 1
2σ2

i
∑

l∈L
(il− slαp (ll ·n))2 , (1)

where σi can be understood as a scale for image noise. We estimate
image noise through the mean squared deviation between neigh-
bouring pixels [BJ01] with N being the set of all pairs of adjacent
pixels.

σ
2
i =

1
|N | ∑

(p,q)∈N
∥ip− iq∥2 (2)

By introducing an auxiliary variable µ := αn, that summarizes
the albedo and the normal, Eq. (1) is minimized. For a given
shadow mask s finding the optimum

µ∗ = argmin
µ∈R3

Ψ

(
∥µ∥, µ
∥µ∥ ,s

)
is equivalent to solving a linear equation. The albedo and normal
can be recovered through:

α = ∥µ∗∥ n =
µ∗

∥µ∗∥

4.2. Shadow Detection

To make shadow detection more robust than simple thresholds over
intensity [GSSM15], we exploit the observation that binary shad-
ows spread across several pixels and extend the energy term from
Eq.(1) by a neighborhood constraint, where ∥ · ∥1 is the L1-norm
or Hamming distance. This term vanishes if the shadow masks of
adjacent pixels are identical, thus favoring smooth shadow masks.

EPhoto(N,S) := ∑
p∈P

Ψp(αp,np,sp)+λ ∑
(p,q)∈N

ωpq∥sp− sq∥1.

(3)

The matrix N = (n1, ...,nP) contains all pixel-wise normals and
similarly for S and all pixel-wise shadow masks. In our experi-
ments, λ = 5 turned out to be a good choice. In line with previ-
ous work, e.g. [BJ01, RKB04, TMSN17], we introduce a similarity
weight between two adjacent pixels p and q

ωpq := max

(
exp

(
− 1

2σ2
i
∥ip− iq∥2

2

)
, ωmin

)
, (4)

encouraging smoothness especially in uniform image regions.
Please note that this pairwise term does not include the surface
normals and has therefore no influence on the normal update. In
our experiments we used ωmin = 0.05.

To find the global minimum, we adopt the ShadowCut method
[CAK07] based on graph cuts. Ψp acts as the so-called unary term
for each pixel: If the pixel is lit, we expect agreement with the Lam-
bertian surface model; if the pixel is in the shadow its intensity
should be next to zero. For fixed albedos and normals, Eq. (3) turns
into a submodular boolean optimization problem and an optimal
solution can be found via graph cuts [KZ04]. Since every shadow
mask is coupled to a single lighting condition the graph cuts are
computed in parallel for each light condition using the implemen-
tation by [BK04].

We combine the albedo-normal update Eq. (1), and the shadow
detection Eq. (3) into a joint optimization scheme. At initialization,
all shadow masks are set to one, assuming there are no shadows.
We then iterate between the shadow detection and the joint albedo-
normal update. The optimization terminates typically after five it-
erations. Other initialization values for shadow masks, converged
after a comparable number of iterations to similar results.

5. Segment-based Depth Estimation

Matching pixels across two cameras is a fundamental problem in
depth-from-stereo estimation, where the search space complexity
is increased by image resolution. In photometric stereo robust iden-
tification of discontinuities is key for accurate 3D reconstructions.
We introduce a shadow based image segmentation, by leveraging
the structure created by self-shadowing. Aggregating pixels into
segments, reduces the matching complexity between image pairs,
while we reliably identify depth discontinuities from the segment
boundaries. In theory, the number of created segments will depend
only on the number of lights and is independent of the actual image
resolution. Due to rasterization artifacts of the pixel-wise defined
image, the initial number of segments is smaller then the theoreti-
cal limit and converges to the upper limit with the image resolution.
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Dataset Pixels Segments Meta-Segments
Artichoke 163k 5.5k 598

Female 1.6M 17k 54
Male 2.0M 23k 181
Nose 79k 1.5k 145

Origami 187k 14k 511
Succulent plant 100k 5.4k 295

Table 1: Comparison between the number of pixels, segments and
the number of remaining meta-segments after the expansion moves.
Please note the drastic reduction between segments and pixels and
then again between segments and meta-segments.

In our experiments we achieve an impressive reduction of complex-
ity, where the number of segments is 10-100 times smaller than the
number of pixels. By merging segments to meta-segments during
the optimization, we reduce the matching complexity by an addi-
tional factor of 10 to 300 (Table 1).

5.1. Shadow Based Image Segmentation

A core contribution of our work, is the exploitation of self-
shadowing to reveal continuous surface patches. We observe that
depth discontinuities are located at shadow boundaries, but not ev-
ery shadow boundary implies a depth discontinuity (Figure 3). Not-
ing that a perfect segmentation is virtually impossible to achieve,
we relax our segmentation goal; instead of a perfect segmentation,
we aim for a segmentation that captures at least all discontinuities.
Even with a fair amount of over-segmentation, the dimensionality
of the problem is reduced significantly. In fact, the Photometric Ex-
pansion Move that we layout in Section 5.4 simultaneously solves
for the absolute depth of each segment and fuses adjacent segments
into larger meta-segments, reducing the dimensionality even further
in the course.

The segmentation is build from shadow masks; two adjacent pix-
els, defined by the indices p and q belong to the same segment, if
their shadow masks sp and sq are identical. Using this relation in
a floodfill-like algorithm, we naturally end up with a number of
segments S1, ...,SS covering the entire image. To simplify access
of the segment’s neighbourhood, segments are saved within a 2D
graph. Some of the resulting segments cover only a few pixels. At
the same time the run-time of our segment matching algorithm is
proportional to the number of segments. To speed up computation
time, we recommend to merge tiny segments to the most similar
adjacent segment, measured by ωpq, Eq. (4), until a minimum seg-
ment size is reached. In our implementation we define a minimum
segment size in relation with the image resolution of 4:106.

5.2. Stereo Matching and Lightcode

Having defined the image segmentation, we continue with the defi-
nition of the matching cost between the left and the right image of a
stereo pair. To simplify notation and description, we will start with
pixel-wise matching energies and extend this later to a segment-
based matching energy. Furthermore, we cover only the matching

Figure 3: A simple example illustrating the semantic image seg-
mentation. Starting from twelve, differently illuminated images
(left), an image segmentation mask is computed (center), where the
segment boundaries, fully cover depth discontinuities (right).

for the left image. For the right image, matching is performed anal-
ogously. The matching terms consists of three components: Con-
sistency of shadow masks, pixel intensity and normal consistency
as well as depth consistency.

Consistent illumination across all lighting conditions, which can
be simplified to consistent shadow masks across all lighting condi-
tions, is an efficient, but still rarely used metric to reduce match-
ing ambiguities along the scanline in depth-from-stereo methods
[SNA∗21]. We express the matching through a shadow mask con-
sistency weight

γp = exp

(
− 1

2σ2
S

∥∥∥sp− s(R→L)
p

∥∥∥2
)
, with 0≤ γp ≤ 1 (5)

where s(R→L)
p is the projection of the pixel-wise defined shadow

mask from the right into the left camera image. In our experiments,
σS = 2 proved to be give a good trade-off between rejection and ac-
ceptance based on the shadow masks. However, matching shadow
masks alone is not a sufficient criterion, e.g., within a segment (Sec-
tion 5.1) all pixels have identical shadow masks.

Consistent pixel intensities permit a finer differentiation then
shadow masks and incorporate additional shading and texture in-
formation. In order to better handle uniform image regions, we also
include normals into the pixel-wise matching term

Φp := ωi

∥∥∥ip− i(R→L)
p )

∥∥∥2
+ωn

∥∥∥np−n(R→L)
p

∥∥∥2
. (6)

i(R→L)
p and n(R→L)

p are, in line with the previous notation, the
image-intensities or normals projected from the right into the left
camera image.

Our method refines depth iteratively, and segment-wise for the
left and right image (Section. 5.4). In the end, both views should
agree on the same depth. We express depth consistency based on
the point-to-plane distance, which has been shown to be more ac-
curate for highly slanted surfaces in the iterative closest point con-
text [RL01, CSFM21].

Ξp = n(L)
p ·

(
x(L)p −x(R)p

)2
, (7)

where xp are the 3D screen coordinates based on the current depth
estimates and x(R→L)

p was projected from the right to the left im-
age. As in previous work [BRR11,TMSN17], we introduce ceiling
cutoffs for the pixel intensity, the normal and the depth matching
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Figure 4: Illustrative example showing the shadow based image segmentation and random depth assignment at initialization (left), one
iteration of the expansion move (green box) and the final result after multiple iterations (right). At each iteration a meta-segment (purple)
together with its one-ring neighbourhood is integrated and the new depth candidates are evaluated based on the cost function. For each
segment, the new depth hypothesis is either accepted (green) or rejected (red).

term. Due to these cutoffs, there is a maximal value of the matching
terms Φmax and Ξmax which we consider as a complete mismatch.
The depth consistency is only taken into account if normals and
pixel intensities match up. Therefore:

Ωp = lerp
(

Ξp,Ξmax,
Φp

Φmax

)
.

lerp(x,y,γ) interpolates linearly between x and y for γ ∈ [0,1], thus,
depth consistency is only taken into account if Φp < Φmax.

When combining all, previously defined matching terms, we
want to enforce matching shadow masks, and define the total
matching function as:

EMat(d) = ∑
p∈S

lerp(Φmax +ωdΞmax, Φp +ωdΩp, γp) . (8)

In consequence, matches with bad shadow mask consistency are
devalued. To speed-up computations, we introduce early termina-
tion criteria if Φp = Φ

(max)
p and assign a mismatch to the total

matching energy.

5.3. Normal Integration

Having ensured a semantically plausible image segmentation that
reliably cuts along depth discontinuities, we estimate surfaces for
each segment independently. For the normal integration we follow
the idea of Durou et al. [DC07] and consider normals and tangents
between adjacent pixels.

However, we replace the traditional gradient formulation by a
more robust tangent term for highly slanted surfaces [CSFM21]
The final energy function for the normal integration is:

EInt(d) = ∑
(p,q)∈N

ωpq min
(
(npq · tpq(dp,dq))

2 ,τ2
Int

)
, (9)

where the weight ωpq between two adjacent pixels was defined in
Eq. (4), tqp is the surface tangent between two pixels and npq is
the normalized mean of the normals at pixels p and q. If (npq · tpq)

2

is above the cut-off τ
2
Int, it is interpreted as a depth discontinuity

between those pixels.

A limitation, all normal integration methods have in common,
is that the resulting surface is only unique up to a constant scaling
factor, since scaling leaves the tangent directions untouched. This
ambiguity cannot be resolved within the normal integration frame-
work itself, and at least one single surface point is required to fix the
entire surface. In Section 5.4 the ambiguity will be resolved by test-
ing different depth candidates. Nevertheless, using the traditional
definition of the surface tangent tpq like [NRDR05,DGS11] would
introduce a bias for small depth values, putting surfaces close to
the camera. In this case, the tangents would be linear in depth d,
i.e. scaling depth means scaling the tangents and hence the energy
Eq. (9) is scaled as well.

Instead, we define the tangent vector based on logarithmic depth.

tpq(dp,dq) = (vp−vq)+(vp +vq)
(

log(dp)− log(dq)
)

(10)

This alleviates the bias while remaining linear - in the new logarith-
mic depth. Thus, minimizing Eq. (9) is still equivalent to solving a
linear system of equations. While depth is invariant regarding mul-
tiplication with a constant scale, the logarithmic depth is invariant
regarding the addition of a constant value. This should come as no
surprise as Eq. (10) contains only differences of logarithmic depths.

5.4. Photometric Expansion Move

Having defined the pixel-wise matching function in Section 5.2 and
the segment-wise integration in Section 5.3, we combine both terms
in the final energy function to estimate the (logarithmic) depth
maps.

E(d) = EMat(d)+ωInt ·EInt(d) (11)

To minimize the energy function, we apply expansion moves,
which is an extended version of graph-cuts for non-binary prob-
lems. Expansion moves allow an iterative refinement of the (log-
arithmic) depth while simultaneously propagating depth to neigh-
bouring segments and fusing segments into larger meta-segments.
To access easier the local neighborhood of each segment, we save
all segments S1, ...,SS in a 2D graph structure [DJK11], with edges
encoding adjacent segments. In addition, we create a second graph
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initialization 4 iterations

8 iterations convergence

Figure 5: From left to right: Depth maps before the expansion
move, after four and eight iterations and after the expansion move.
Segments grow into larger meta-segments and continuously con-
verge to the final position.

saving all meta-segments,M1, ...,MM with M ≤ S. At initializa-
tion time, every segment is its own meta-segment. During the op-
timization meta-segments are fused and the total number of meta-
segments will decrease.

We initialize the photometric expansion move by integrating
each meta-segment individually by Eq. (9) and scatter the segments
in the capturing volume by assigning randomly uniform scaling
along depth. Operating in logarithmic depth space Eq. (10), this re-
sults in adding a uniform log-depth offset for each segment. After-
wards we select meta-segment by meta-segment, and test whether
each meta-segment and its its one-ring neighbourhood of segments
form one continuous surface. Testing only adjacent segments, and
not adjacent meta-segments, is motivated by providing a possibil-
ity to separate meta-segments again and recover from non-optimal
decisions at the beginning of the optimization. We obtain the hypo-
thetical surface as the solution of the minimization problem

min
d(cand)

∑
(p,q)

ωpq

(
npq · tpq(d

(cand)
p ,d(cand)

q )
)2

s.t. ∑
p∈M

log
(

d(cand)
p

)
= ∑

p∈M
log(dp),

where (p,q) are all pixels of the meta-segment and the one-ring
neighbourhood. Note that this is equivalent to Eq. (9) without the
cut-off. By explicitly omitting the cut-off, we make the assumption
that meta-segment and the one-ring neighbourhood form a single
continuous surface. The additional constraint is needed to make the
surface unique and ensures that current depth and candidate depth
agree as much as possible within the meta-segment.

Algorithm 1 Photometric Expansion Move

1: S = {1, . . . ,S} ▷ image segments
2: M= S ▷ meta-segments
3: for left & right image do
4: for i = 1, . . . ,M do ▷ all meta-segments
5: select S j ∈N ofMi ▷ one-ring neighbourhood
6: generate dcand from Eq. (9) + ∆(logd)
7: b∗ = argmin (Eq. (12))
8: for each S j do
9: if b∗j == true then

10: d← dcand in S j ▷ adopt depth
11: fuse(S j,Mi) ▷ add to meta-segment
12: end if
13: end for
14: updateM
15: end for ▷ end meta-segments
16: end for ▷ end image pairs

In addition to testing for continuous surfaces, we add a perturba-
tion ∆(logd) to the candidate depth, leading to a depth refinement
over time. Remember, adding a uniform offset does not influence
optimality with regards to the normal integration. In order to effec-
tively sample the search space the perturbation is sampled from a
normal distribution of width σpert. Large perturbations explore the
search space while small perturbations refine matches that we al-
ready found. Therefore, we decrease σpert in the course of the algo-
rithm. The total energy function Eq. (11) allows us to test whether
the new depth is better or worse for the selected meta-segment and
its one-ring neighbourhood. Based on the result of the boolean op-
timization problem, we decide for each segment whether to adopt
or reject the depth hypothesis.

On the one hand, there is the matching error which is a sum over
pixel-wise errors. The matching error for any segment Si is simply
the sum over all pixel-wise errors for p∈Si. Depending on whether
we use the current depth or the candidate depth, there are up to two
outcomes for the error which we denote E(Si)

Mat (0) for the current

and E(Si)
Mat (1) for the candidate depth.

On the other hand, there is the integration error which is a sum
over all adjacent pixels pairs p and q. Each pixel belongs to one
unique segment. If p ∈ Si, then q must be in Si as well, or in one
S j within the one-ring neighbourhood of Si. If p and q are in the
same segment, this segment can either adopt or reject the candidate
depth leading to two possible integration errors E(Si,Si)

Int (0,0) and

E(Si,Si)
Int (1,1). If p and q belong to two adjacent segments Si and S j

there are two more options: One segment can adopt the candidate
depth while the other rejects it, leading to the integration errors
E(Si,S j)

Int (0,1) and E(Si,S j)
Int (1,0) at the boundary of Si and S j.

By summing over all segments and all pairs of adjacent segments
we obtain a boolean optimization problem from Eq. 11:

E(b) = ∑
i

E(Si)
Mat (bi)+ωInt ∑

(i, j)
E(Si,S j)

Int (bi,b j) (12)

where bi = 1 if segment Si adopts the candidate depth and bi = 0
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Figure 6: Visual comparison of the reconstruction before (left) and
after post-processing (right). The post-processing removes wrong
matches from occluded areas and closes small gaps around (meta-
) segment boundaries.

if the candidate depth is rejected. Any combination for the meta-
segment and its one-ring neighbourhood represented by b leads to
a different new depth dnew. The condition E(dnew) = E(b) is valid
for each value of b. Hence,

b∗ = argmin
b

E(b) (13)

describes the optimal adoption/rejection strategy. All segments
adopting the depth hypothesis are fused into one meta-segment. If
some adopting segments are disconnected, segments are fused into
different meta-segments.

Different to the graph-cut based shadow detection, we cannot
guarantee that all binary terms E(Si,S j)

Int are strictly submodular.
They mostly are as long as ∆(logd) is large compared to the noise
in the normal data. Still, graph cuts can be used to obtain a (partial)
solution that is guaranteed to not increase the energy [KR07].

It might appear that the photometric expansion moves requires
an escalating amount of normal integrations on different iterations.
In theory, this is true. However, the integration can be speed up sig-
nificantly. We are using the conjugate gradient algorithm [GJ∗10]
to solve the linear system involved in the normal integration. As
an iterative solver, conjugate gradient benefits from a good initial
guess. Due to the structure of the normal integration problem, such
a guess can be easily obtained from previous iterations, because
the internal shape of a segment is typically quite close to the op-
timum already. The matter is more about aligning the segments to
each other. For the selected meta-segment, this was full-filled in the
previous iteration. For segments in the one-ring neighbourhood, we
can use the additive degree of freedom to minimize the integration
error along the boundary to the meta-segment; Segments are moved
as a whole to line up the boundaries.

The total energy also includes the photometry term Eq. (3). How-
ever, the effect of depth on lighting and thus normals is neglible and
can be omitted for the depth update. Still, we update shadow masks
as well as albedo/normals every four iterations of the expansion
move with EInt acting as a regularization term encouraging orthog-
onality to the surface.

3D Model Reference ViewInput Image Pair

Figure 7: Qualitative comparison for real data. From left to right:
original image pair taken by a stereo camera, 3D reconstruction
matching the reference view, image taken by a third (reference)
camera.

5.5. Post-Processing

The expansion moves converge closely to the global minimum.
However, this is only valid under the assumption that the integra-
tion of meta-segments is free of errors. Due to numerical and dis-
cretization errors, noise within data or deviations from the Lam-
bertian model small discontinuities might be introduced between
meta-segments. To improve the visual reconstruction quality, we
further minimize our energy function Eq. (11) using the Gauss-
Newton algorithm, by linearizing the errors, solving for a descent
direction and perform a line search. The energy function is mini-
mized for each meta-segment while keeping the surrounding meta-
segments fixed, cf. Eq. (9). Since meta-segments are a suitable prior
for connected regions, this gives a good balance between perfor-
mance and quality as opposed to a global optimization. We run five
iterations of Gauss-Newton for each meta-segment one after the
other until convergence. It is worth noting that Gauss-Newton con-
verges to the next best minimum and is thus only meaningful in
conjunction with previous expansion moves to bring us close to the
desired optimum. After the Gauss-Newton iteration, we check for
depth consistency between both views and reject inconsistent pix-
els, which is a well-established method to improve reconstruction
results and to handle occlusions, cf. e.g. [BRR11]. A close-up of
the artichoke reconstruction before and after post-processing can
be found in Figure 6. After the expansion move, all segments are
approximately in the right position but there are still visible gaps
between the (meta-) segments and some amount of noise. These
gaps close during post-processing leading to a smoother surfaces
and boundaries.

6. Evaluation

The central element of our algorithm is the iterative fusion of seg-
ments into larger and larger meta-segments. The number of pixels,
against the number of segments at initialization time and the final
number of fused meta-segments can be found in Table 1. Obvi-
ously, the number of segments is at least one magnitude smaller
than the number of foreground pixels. The advantage seems to be
even larger for the two higher resolution datasets. However, the
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Figure 8: The ratio between meta-segments and the original num-
ber of segments in the course of the algorithm. The number of meta-
segments decreases quickly after a few iterations.

strong reduction in complexity becomes apparent if we look at
the number of remaining meta-segments which are again, several
magnitudes less compared to the original number of segments. The
number of meta-segments during the optimization is illustrated in
more detail in Figure 8. As is easy to see, already a handful of iter-
ations are sufficient to fuse a substantial amount of segments into
meta-segments. This is consistent with the evolvement of the depth
maps in Figure 5.

Real World Examples We perform qualitative as well as quanti-
tative tests on some challenging examples. Here, the images where
acquired in a lightstage similar setup [SSWK13] using 41 lights,
that roughly uniformly sample a hemisphere. The first object is a
so-called moulage, a medical wax model of a human nose depicting
a skin disease. The model together with the error map is depicted in
Figure 9. The groundtruth data stems from a structured-light scan-
ner. The RMSE is well below 1mm. Despite micro-structure and
the wrinkles of the cloth, it is reconstructed at a high precision. The
same is true for the area right around the nostrils. Both the tip and
the bridge of the nose illustrate that our pipeline can handle non-
Lambertian materials albeit with some effect on the reconstruction
quality. Additionally, we have reconstructions for an artichoke and
a succulent plant. Lacking groundtruth data, we rely on the visual
similarity and compare the reconstructed 3D model against a refer-
ence view obtained with an additional camera (Figure 7).

Previous work: For quantitative analysis and comparisons to pre-
vious work we rely on three synthetic datasets: A male and a fe-
male 3D face scan with pore-deep geometry details, purchased
from 3D Scanstore and a highly self-occluding Origami inspired
scene modelled in 3D. All scenes were rendered as HDR-images
with the Arnold render engine, using 73 lights uniformly spread
across a hemisphere at about 3m distance to the object and ob-
served through a stereo camera at 2m distance and a baseline of
15cm. For the faces, we use a resolution of 2048 by 2048 pixels
and 1024 by 1024 pixels for the Origami scene.

We compare our method to the photogeometric scene flow
(PGSF) algorithm [GSSM15] that was developed for face scan-
ning and combines photometric stereo with depth-from-stereo and
optical flow. For a fair comparison, we adapt the method to us-
ing all lights and omit the scene flow part as we are dealing with

(a) Input View

RMSE=0.72 mm

(b) Reconstruction Error

mm

Figure 9: Quantitative comparison to the ’Nose’ dataset. The ob-
ject is a medical wax model of a human nose depicting a skin
disease. groundtruth data was acquired through a structured light
scanner. Both images where rotated for an upright depiction.

Groundtruth RMSE=0.12mm RMSE=0.34mm RMSE=1.57 mm

Groundtruth

(a) Object

RMSE=0.12mm

(b) Ours

RMSE=0.26mm

(c) PGSF

RMSE=2.21mm

(d) HITNet

Figure 10: Quantitative comparison of the ’Male’ and ’Female’
dataset. From left to right: A rendering of the object, error maps
and root-mean-squared error (RMSE) for our method, the method
in [GSSM15] and HITNet [THZ∗21]
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Input View (Left)

(a) Object

Groundtruth

(b) Object

RMSE=0.59mm

(c) Ours

RMSE=1.32 mm

(d) PGSF

RMSE=10.5 mm

(e) HITNet

mm

Figure 11: Quantitative comparison of the ’Origami’ dataset. From left to right: A rendering of the object, ground truth result from a
tilted view, error maps and root-mean-squared error (RMSE) for our method, PGSF [GSSM15] and HITNet [THZ∗21]. Our results, show
substantially less smearing artifacts at depth discontinuities.

(a) Groundtruth (b) All (c) Normals and Intensity (d) Intensity only

Figure 12: Ablation Studies: (a) Ground truth result from a tilted view, (b) reconstruction result with the full matching term, (c) reconstruction
result with normal and intensity matching only (without lightcodes) and (d) finally matching based on pixel intensities alone. Especially for
occluded areas - like the lower flower petals - and uniform areas - like the lowest leaf layer - the reconstruction quality noticeably decreases.
Some segments are misplaced, others are removed during post-processing due inconsistencies across views.

static scenes. Furthermore, we compare against HITNet [THZ∗21],
a state of the art depth-from-stereo algorithm, leading at the time
of comparison the synthetic SceneFlow [MIH∗16] benchmark. To
make the comparison as fair as possible, the image pairs were ren-
dered without shadows with a headlight at the camera position. Ma-
terials in all scenes are fully Lambertian. The results for the faces
are shown in Figure 10 and for the Origami scene in Figure 11. The
Origami dataset, together with the reconstructed 3D point clouds is
part of the supplemental material. In both comparisons, our method
has the smallest root-mean-squared error (RMSE). While we out-
perform PGSF only in areas with depth discontinuities, The RMS-
error of our method is an order of magnitude smaller compared to
HITNet.

Ablation Studies: Finally, we evaluate the effects of the different
parts of our algorithm. A key element of our algorithm is the in-
troduction of lightcodes, i.e. shadow masks and normals our into
matching term. For comparison, we performed our reconstruction
without lightcodes as well as without lightcode and normals, i.e.
only based on image intensities. The results are pictured in Fig-
ure 12. Clearly, omitting parts of the matching term results in mis-
placed or missing segments. Missing segments occur if both views
do not agree on a consistent depth. The effects are especially ap-
parent for uniform regions like the lowest leaf but also for occluded
regions like the lower flower petals.

7. Conclusion and Future Work

We proposed a photometric 3D reconstruction algorithm that fully
integrates photometric stereo and depth-from-stereo into a sin-
gle reconstruction pipeline. We demonstrated that this integrated
pipeline reconstructs both synthetic rendering as well as real
footage and achieved state of the art performance. In future work,
we would like to investigate more complex shading models, es-
pecially in order to handle specular reflections. Our experiments
proved that the core component of our algorithm, the shadow-based
segmentation, reduces the matching complexity between stereo
pairs. At the same time, cuts are introduced reliably along depth
discontinuities. This, together with the light-code based matching,
resulted in very clean edges without any smearing artefacts. Fur-
thermore, our method proved to be capable of rapidly fusing seg-
ments together into even larger meta-segments, thus reducing the
complexity even further. Due to the high reconstruction quality, we
believe that the iterative reduction of meta-segments demonstrates
the full potential that lies in deeply integrating photometric stereo
with depth-from-stereo methods. We would like to investigate how
our approach scales with the number of views in a multi-view stereo
setup.
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