

Image Segmentation from Shadow-Hints using Minimum Spanning Trees

MORITZ HEEP & EDUARD ZELL

UNIVERSITY OF BONN

BACKGROUND

Image segmentation in RGB space is a difficult task. High-contrast textures can lead to over-segmentation while similarly coloured objects might not be separated.

Previous Work:

Learning-Based [4]

Classic [2]

METHOD

- + robust performance
 + no training needed
- need for training data error prone

MAIN IDEA

Foreground objects cast shadows onto background objects. Therefore, transitions from light to shadow occur on object boundaries and reveal details about spatial structure of the scene.

Using a moving light source together with a static camera allows tracing object contours [7]. However, these contours are typically not watertight. Previous work on interactive sketch colouring has shown that the Delaunay triangulation of contour points captures all the key properties needed for segmentation [6].

We solve the contour completion problem on the face graph of the Delaunay triangulation by modifying minimum spanning tree algorithm [5].

CONCLUSION

Our approach achieves results that are comparable to state-of-the-art but without the need for training. Since the segmentation runs in real-time, an interactive modification of the user-parameters is feasible.

Niebuhrstraße 1a 53113 Bonn @ mheep@uni-bonn.de moritzheep.github.io

ACKNOWLEDGEMENTS

Special thanks to Amal Dev Parakkat for fruitful discussions. This work has been funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy, EXC-2070 - 390732324 (PhenoRob).

SEGMENTATION

- **1.** Order edges by non-decreasing length.
- 2. Track aspect ratio

$$I_{S} = \frac{|S| - A_{\min}}{\min_{e \in S}(|e|)}$$

for each segment.

3. Merge the segments S, S' on either side of an edge e if $|e| > \kappa \cdot \min(l_S, l'_S)$

INTERACTIVE FINETUNING

The segmentation algorithm runs ins real-time and allows for the interactive manipulaion of the user parameters.

RESULTS

RGB Input used for FS04 [2] and SAM23 [4]. Our algorithm uses OLAT

REFERENCES

- 1. John Canny. 1986. A Computational Approach To Edge Detection. Pattern Analysis and Machine Intelligence
- 2. Pedro F. Felzenswalb and Daniel Huttenlocher. 2004. Efficient Graph-Based Image Segmentation. International Journal of Computer Vision.
- 3. Moritz Heep and Eduard Zell. 2022. ShadowPatch: Shadow Based Segmentation for Reliable Depth Discontinuities in Photometric Stereo. Computer Graphics Forum.
- 4. Alexander Kirillov et al. 2023. Segment Anything, Proceedings of the IEEE/CVF International Conference on Computer Vision.
- 5. Joseph B. Kruskal. 1956. On the Shortest Spanning Subtree and the Traveling Salesman Problem. Proceedings of the American Mathematical Scociety.
- 6. Amal Dev Parakkat, Pooran Memari, and Marie-Paule Cani. 2022. Delaunay Painting: Perceptual Image Colouring from Raster Contours with Gaps. Computer Graphics Forum.
- 7. Ramesh Raskar et al. Non-Photorealistic Camera: Depth Edge Detection and Stylized Rendering Using Multi-Flash Imaging. ACM Transactions on Graphics.

shadow-masks.

FS04 [2] is a graph-based segmentation algorithm using minimum spanning trees.

SAM23 [4] is a state-of-the-art learning-based algorithm that was trained on millions of images.

Our method achieves comparable results from shadow-masks without the need for training data.