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Delaunay Triangulation Segmentation

Figure 1: Overview of our Pipeline: Starting from a set of shadowmasks, we use templates to extract light-to-shadow transitions.
After combining these transitions into an edge strength and direction, we apply non-maximum suppression to obtain thin
outlines. The segmentation is performed on a Delaunay triangulation of the detected outline points.
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1 INTRODUCTION
Image segmentation in RGB space is a notoriously difficult task
where state-of-the-art methods are trained on thousands or even
millions of annotated images [Kirillov et al. 2023]. While the perfor-
mance is impressive, it is still not perfect. We propose a novel image
segmentation method, achieving similar segmentation quality but
without training. Instead, we require an image sequence with a
static camera and a single light source at varying positions, as used
in for photometric stereo, for example. Here, foreground objects
cast shadows onto background objects, the detection of transitions
from light to shadow can be used to reveal the spatial structure of
the scene and to trace the contour of an object. Unfortunately, these
contours are not water-tight and simple flood-fill approaches fail.
Inspired by interactive sketch colouring methods [Parakkat et al.
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2022], our novel image segmentation algorithm is based on Delau-
nay triangulations. After converting the pixel grid to a mesh, our
algorithm operates on the face graph of the Delaunay triangulation
where there is no notion of colour similarity. Instead, we rely on the
edge length as a similarity indicator due to the circumcircle prop-
erty of the Delaunay triangulation. While comparable graph-based
image segmentation algorithms [Felzenszwalb and Huttenlocher
2004] cluster pixels according to colour similarity and achieve -
by current standards - only mediocre results, our method shows
promising results without any training on annotated data.

2 METHOD
Instead of RGB images, we require binary shadow masks for each
light position to generate a discontinuity-sensitive image segmen-
tation. Such shadow masks are commonly created in photometric
stereo, see e.g. [Heep and Zell 2022].

2.1 Shadow Edge Detection
We apply a template matching procedure to detect shadow-to-light
transitions in all shadow masks and merge them into a pixel-based
edge strength and direction. We use ten templates (Fig. 1), each
7 × 7 pixels big: Two for completely lit or shadowed regions and
eight for light-to-shadow transitions in the directions 𝑑 ∈ N of the
eight pixel neighbourhood. Let 𝐸𝑙𝑝,0, 𝐸𝑙𝑝,1 and 𝐸𝑙𝑝,𝑑 be the resulting
𝐿2 errors at pixel 𝑝 under lighting 𝑙 . Fully shadowed regions and
transitions that cannot be explained by the current light position,
cf. [Raskar et al. 2004], are excluded by setting the binary weight
𝜔𝑙𝑝,𝑑 ∈ {0, 1} to zero. We calculate the edge score

𝑏𝑝,𝑑 =

∑
𝑙 𝜔𝑙𝑝,𝑑 · 𝜎

(
(𝐸𝑙𝑝,1 − 𝐸𝑙𝑝,𝑑 )/𝛽

)∑
𝑙 𝜔𝑙𝑝,𝑑

∈ [0, 1] (1)

for each direction 𝑑 ∈ N and pixel 𝑝 . The sigmoid function 𝜎

smoothly transitions between 0 and 1, depending on whether a
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pixel is fully lit or the respective transition direction is a better fit.
For each pixel, we choose the edge direction 𝜃𝑝 ∈ N such that 𝑏𝑝,𝑑
is maximal and use the maximum value 𝑔𝑝 as edge strength.

2.2 Subpixel Delaunay Triangulation
To extract thin outlines from edge strength 𝑔𝑝 and direction 𝜃𝑝 , we
apply non-maximum suppression and double thresholding [Canny
1986]. Furthermore, we refine the location of each edge pixel, by
employing a quadratic fit to locate the subpixel positions of the
maxima in 𝑔𝑝 . This yields smoother outlines and moves maxima
away from pixel centres, i.e. pixels are unambiguously within one
segment. The maxima are then connected through a Delaunay
triangulation, completing our shift from the pixel domain to a
2D polygon mesh. We remove any triangles covering the image
background.

2.3 Segmentation
Our segmentation algorithm progressively fuses triangles into larger
segments, cf. [Kruskal 1956]. Since vertices are more densely placed
along detected outlines, the shared edge length between two trian-
gles is a suitable proxy for how likely these two triangles belong to
the same segment. We exploit this by placing the edges in a priority
queue with non-increasing edge length. Running any minimum
spanning tree algorithm with these lengths would fuse all triangles
into a single segment. Instead, we calculate the aspect ratio for each
segment 𝑆 as the ratio between its area |𝑆 | and the length |𝑒 | of its
shortest edge:

𝑙𝑆 :=
|𝑆 | −𝐴min
min𝑒∈𝑆 ( |𝑒 |)

. (2)

Reducing the segment area by 𝐴min ensures that segments smaller
than 𝐴min are fused in the further course of the algorithm. When
processing edge 𝑒 , we check if

|𝑒 | > 𝜅 ·min (𝑙𝑆 , 𝑙𝑆 ′ ) (3)

where 𝜅 > 0 is a parameter to control the segment shape. If true,
segments 𝑆 and 𝑆 ′ are fused along the edge 𝑒 . Over time, the seg-
ments become larger and contain increasingly shorter edges. Hence,
𝑙𝑆 increases as segments grow until no more fusions occur. The al-
gorithm terminates when all edges have been processed. Segments
smaller than 𝐴min are always fused.

3 EXPERIMENTS
We tested our algorithm on different objects against classic and
learning-based image segmentations: FH04 [Felzenszwalb and Hut-
tenlocher 2004] operates on a nearest-neighbour graph built from
screen position and RGB colour. In contrast, the Segment Anything
Model (SAM23) [Kirillov et al. 2023] is a state-of-the-art deep learn-
ing approach. FH04 leads to over-segmentation in textured regions
(e.g. the wooden branch, Fig. 2) and under-segmentation for simi-
larly coloured segments. SAM23 and our method are more robust
and create comparable results in many cases. SAM23 is prone to
over-segmentation in high-contrast textures (e.g. the origami but-
terfly, Fig. 2) while our approach is prone to under-segmentation if
transitions between objects are too smooth to cast a shadow.

Figure 2: From Top to Bottom: RGB input used to generate
segmentations with FH04 and SAM23 as well as our segmen-
tation from shadow-hints. For our method, detected outline
points are overlaid to visualize where completions occur.

4 CONCLUSION
Given the quality of the results without depending on annotated
data, our method offers an alternative to create annotated datasets
to train learning-based image segmentation algorithms. The granu-
larity of the segmentation can be controlled in real-time through the
user parameter 𝜅 and manual refinement is feasible at the segment
level, instead of the pixel level.
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